Sensorless PV Power Forecasting in Grid-Connected Buildings through Deep Learning


  • Authors: Junseo Son, Yongtae Park, Junu Lee and Hyogon Kim
  • Abstract:
    Existing works in photovoltaic (PV) power generation focus on accurately predicting the PV power output on a forecast horizon. As the solar power generation is heavily influenced by meteorological conditions such as solar radiation, the weather forecast is a critical input in the prediction performance. However, the weather forecast is traditionally considered to have coarse granularity, so many are compelled to use on-site meteorological sensors to complement it. However, the approach involving on-site sensors has several issues. First, it incurs the cost in the installation, operation, and management of the sensors. Second, the physical model of the sensor dynamics itself can be a source of forecast errors. Third, it requires an accumulation of sensory data that represent all seasonal variations, which takes time to collect. In this paper, we take an alternative approach to use a relatively large deep neural network (DNN) instead of the on-site sensors to cope with the coarse-grained weather forecast. With historical PV output power data from our grid-connected building with a rooftop PV power generation facility and the publicly available weather forecast history data, we demonstrate that we can train a six-layer feedforward DNN for the day-ahead forecast. It achieves the average mean absolute error (MAE) of 2.9%, comparable to that of the conventional model, but without involing the on-site sensors.
  • Link:

  • Sensors 2018, 18, 2529; doi:10.3390/s18002529
Inline Feedbacks
View all comments